
Enhancing Pure Data Interactivity With Computer Vision (Open CV)
Lluis Gómez I Bigórda

Hangar.org

Passatge del Marquès de Santa Isabel, 40

Can Ricart
E-08018 Barcelona

Tel: (+34) 933 084 041

lluisgomez@hangar.org

Yves Degoyon

GISS.tv

c/ Palma de San Just, 7

E-08002 Barcelona

Tel: (+34) 699 502 573

ydegoyon@gmail.com

ABSTRACT
Nowadays Computer Vision is acquiring a growing relevance in
the field of interactive arts. The purpose of this paper is to
introduce some computer vision techniques which are the base of
the actual pd_opencv library, a set of objects (delivered as
independent objects and not a library), utilities and examples to
use those techniques inside the Pure Data programming
language. At the same time we introduce some practical
examples of the possible use cases on this topic, and a brief
introduction to the internals of the pdp and Gem libraries and the
openCV API in order to understand the way to refine and extend
the actual pd_opencv approach, as like as a desired routemap for
further pd_opencv development.

Keywords
computer vision, gesture recognition, motion tracking, motion
detection.

1. Introduction
Nowadays Computer Vision is acquiring a growing relevance in
the field of interactive arts. From the Myron Krueger's pioneering
artwork in the 70's to the present days, lots of artists had been
using Computer Vision techniques on their works, extending its
field of traditional applications : medical, military, industrial,
Massively popularized around 2002 with the introduction of the
Eye Toy in the game scene, contemporary to the firsts works of
Golan Levin, the actual screenario includes lots of interesting
pieces in all the interactive and multimedia arts including video
dance performances, installations, see for example the popular IR
multi-touch screen designs and the acclaimed Reactable musical
instrument. In all that time, Computer Vision discipline never
stopped to improve.

Pure Data [10] as a programming environment for interactive art
has a set of functions and libraries to deal with different
interaction paradigms, including HID, networking and
communication protocols (osc, midi, dmx, etc), physical
computing (i.e. arduino boards) and obviously also computer
vision. However, the tools actually included in the graphical
libraries for Pure Data (pdp/pidip [7,8] and Gem [9]), are far of
the high depth sensing level present in other programming
languages. If you take a look at other interactive authoring tools
as Open Frameworks, Max/MSP or Proce55ing, you will notice
that all of them uses Computer Vision implementations based on
the same programming library, namely Open CV [1].

Open CV [1] (Open Source Computer Vision) is a free open-
source library of programming functions with more than 500
algorithms mainly aimed at real time computer vision. Open CV
is written in performance optimized C/C++ code, it can run on
Windows, Linux, and Mac OS X, and is free for commercial and
research use under a BSD license. Optionally, when running on
an Intel-compatible processor, it makes use of some highly
optimized assembly routines : the Intel Integrated Performance
Primitives library, IPP [3], designed for an efficient use of the
processor features for multi-media processing.

Example applications of the Open CV library are Human-
Computer Interaction (HCI), Object Identification, Segmentation
and Recognition, Face Recognition, Gesture Recognition, Motion
Tracking, Ego Motion, Motion Understanding, Structure From
Motion (SFM), Stereo and Multi-Camera Calibration and Depth
Computation, Mobile Robotics.

At this point of development, it seems now obvious that a high
performance Computer Vision library for Pure Data must be
based on Open CV, for its convenient API dedicated to image
analysis and for its included mathematical utilities (matrix
algebra, ...).

Rather than to rewrite code our proposal will be to provide Open
CV bindings for Pure Data, that will give qualitative information
that can come out of image and video analysis, in order to
include it in a Pure Data processing chain, the data detected by
some visual processing will be then able to command vocal
synthesis, light control, activation of electronics devices through
arduino, ... and, more generally, being a way of controlling all
what Pure Data can do.

2. Motivations and Goals
As usual in the PD community, the starting point in the
development of new modules reflects an uncovered necessity of
the user, who doesn't find a concrete functionality among the
existing libraries. If one make a search for existing CV objects in
both the most common graphical libraries for pure data
(PDP/PiDiP [7,8] and Gem [9]) you will find some useful
objects as the pdp_mgrid, pdp_ctrack, pdp_shape and some
image morphology objects which are part of pidip, and
pix_movement, pix_blob, pix_fiducials in Gem, but these objects
are based on very simple image algorithms : the detection of
blobs for example common to pix_blob and pdp_shape is a
simple analysis of adjacent pixels that forms some shapes or
blobs, but this technique is a single-stage analysis technique and
can be easily fooled when the contrast in an image is getting
blurred and confusion often occurs with such simple techniques.

To access a more sophisticated level of analysis, we must
introduce some image representation techniques : Histograms,
Fourier Transform, ... and some interpretation techniques
inspired by artificial intelligence : Haar's cascade decision tree,
image segmentation, contours completion, polygonization, ...
which are hopefully all easily available in Open CV (ref :
'Learning OpenCV' [4]).

The goal of the pd_opencv [2] project is to provide a collection of
tools, externals and abstractions to perform tasks such as image
segmentation, shape and gesture recognition, motion tracking,
etc. as well as to provide simple examples to help understanding
the basics of computer vision techniques.

pd_opencv [2] wants to be a starting point for a more complex
image analysis library, open to research and development inside
the pd community.

3. First Considerations Working With
Computer Vision
Imagine a "dummy" scenario where a "dummy" artist wants to
use the movement of people in front of a camera to, let's say,
modify the ambient sound of the room. Motion detection is
usually done by frame differencing, this technique attempts to
locate moving "objects" in a video sequence by observing the
difference on each pixel of the current frame with the
corresponding pixel on the previous one. If the pixel color has
changed more than a certain threshold value we assume there
was some movement in that pixel (coordinates of the image). In
the practice, this technique may fail on several situations, for
example what happens if we don't have enough light in our room
and the camera is producing an image with that typical granular
noise? our algorithm will identify that noise as movement.

Imagine now the artist also wants to isolate the silhouettes of the
visitors to show them projected on the wall. Background
subtraction is another basic technique that identifies the pixels of
the persons (or objects) in our captured frame according to their
difference from a previously recorded background scene taken in
the same place without any person (or object) in front of the
camera, this is same math that in the movement detection
algorithm but comparing each frames with a reference image
(and not with the previous frame). This simple pixel by pixel
difference operation will work under certain circumstances, but
what happens if a person wears a t-shirt with exactly the same
color as the background? and what about if the lighting
conditions in the room has changed since we recorded our
reference background image? these situations will introduce
errors in our algorithm results.

As you can see in both the two previous examples, even as them
are probably the more elemental CV techniques, those techniques
require a well planned capture environment to produce correct
results. And that consideration is a common issue for mostly all
the CV techniques. In the words of Golan Levin :

<< ... the reliability of computer vision algorithms is limited
according to the quality of the incoming video scene, and the
definition of a scene's "quality" is determined by the specific
algorithms which are used to analyze it, students approaching
computer vision for the first time are encouraged to apply as
much effort to optimizing their physical scenario as they do to
their software code. In many cases, a cleverly designed physical
environment can permit the tracking of phenomena that might
otherwise require much more sophisticated software.>>

Interactive artists should be "hands on work" with CV to acquire
the necessary experience to deal with that issues. Take again our
"dummy" scenario for a last example related on that, imagine
now our "dummy" artist wants to isolate the visitors silhouettes
again but with an extra handicap that is the background image is
a wall with a moving image projected on it. Anything we take as
a reference background to be compared with captured frames will
led our algorithm to a messy result, as the image of the
background is not static. Making use of infrared light we'll find a
solution for that problem: if we have the scene well illuminated
with IR light, using an IR camera we'll be able to capture the
scene without the video projection of the wall, as the light of the
video projector projecting IR frequencies.

In that sense, a good setup and a fitted video capturing device
can be as important as a good and very sophisticated algorithm.
For this reason, we modelize an Open CV algorithm in 3 phases :
filtering, pre-processing and analysis :

In this example, we want to track the extremities of a sea star
form, so we pass through a stage of filtering that extracts only the
significant forms of the image, then an edge detection stage that
reduces the image to its boundaries and finally we pass the image
to a contour tracking object that lets us mark the contours we are
interested in, e.g. the extremities of the star.

Here the input device is a simple webcam, but for some setup,
especially for live performance environment, you might also
sometimes consider using special video devices, like IR cameras
or heat-sensitive cameras.

We will now detail the actual state of development of pd_opencv,
that implements a few Open CV algorithms, mostly taken from
Open CV code samples directory and available as an object for
PDP (pdp_opencv_*) or for Gem (pix_opencv_*).

4. Existing modules

4.1 Filtering modules

As explained in the general introduction, these modules are
useful to transform the image in a simpler image to be processed
by further analysis modules.

4.1.1 pdp/pix_opencv_threshold

Many of Open CV analysis object (blob detection, contours
detection) operate better on binary images, this means on an
image that is reduced to the pixels above or below a certain level
of intensity.

The object threshold is the most used in an Open CV chain and
can binarize images in a variety of modes :

It applies a fixed-level threshold to frames. It produces a binary
like image but still in RGB (RGBA or whatever it was before).

Input Parameters :

mode :

CV_THRESH_BINARY : maxvalue if src>threshold

CV_THRESH_BINARY_INV : maxvalue if src<threshold

CV_THRESH_TRUNC : threshold if src>threshold

CV_THRESH_TOZERO : 0 if src<threshold

CV_THRESH_TOZERO_INV : 0 if src>threshold

threshold : value of the threshold for testing pixels.

maxvalue : maxvalue used for BINARY mode, default 255.

Output :

Camera input

Filtering

Analysis

Pre-processing

Thresholding

Contours Tracking

Edge detection

Webcam

4.1.2 pdp/pix_opencv_athreshold

For some kind of images, where some zones are really dark and
some zones are really bright, a fixed-level threshold might be too
desctructive, and for such cases, we need to use an adaptative
threshold filter, where the level of the threshold depends on the
average luminosity in the block of surrounding pixels.

Input Parameters :

method :

CV_ADAPTIVE_THRESH_MEAN_C : use as a threshold the
average value of pixels in the size x size surrounding pixels
block.

CV_ADAPTIVE_THRESH_GAUSSIAN_C : applies a gaussian
weight to the pixels around the current pixel. Pixels in the center
have a heavier weight than the ones on the outskirts of the block.

mode :

CV_THRESH_BINARY : maxvalue if src>threshold

CV_THRESH_BINARY_INV : maxvalue if src<threshold

blocksize : size of the surrounding blosk to calculate the
threshold.

dim : attenuation of the threshold, the real threshold used is the
calculated threshold minus dim.

maxvalue : maxvalue used for BINARY mode, default 255.

Output :

4.1.3 pdp/pix_opencv_bgsubstract

This filter is used in motion detection when you want to
distinguish moving objects from a static background.

It takes an image as a background reference when receiving a
'SET' message and then compare each incoming frame with that,
using a threshold value to compare the pixels.

It is useful if you want to detect objects that are in front of an
static background and you want to isolate the foreground
silhouettes of moving objects.

Input Parameters :

SET message :

This is used to capture the background.

threshold : value of the threshold for testing if pixels have
changed.

Output :

This object works comparing color values of each pixel, so it can
fail if the foreground object has the same color that the
background, and also if the light conditions or the shadows
changes since you 'SET' the background image.

4.1.4 pdp/pix_opencv_bgstats

This object is very similar to bgsubstract but it uses a time
parameter and a statistical model that makes objects considered
as the foreground disappear after a while and then be considered
as background. So it behaves as an adaptive background
extractor.

It also performs a suplemental stage os noise filtering through
internal morphology (erosion / dilation) and eliminates small
blobs that can be considered as noise.

The output of the foreground is in binary mode.

Input Parameters :

RESET message :

Reset the backgroumd to current frame.

alpha : period of time after which a foreground object is
considered as background (default : 0.1 seconds).

erode : number of iterations of the erode/dilate filter to eliminate
noise.

minarea : minimum sie of the objects shown in the foreground.

Output :

4.1.5 pdp_opencv_channels

This object is a simple RGB channels separator that can be
useful when it's necessary to detect some specific hues in a video
input.

It only exists in the version for PDP, in GEM you can use
pix_bitmask instead.

Input Parameters :

None.

Output :

4.2 Pre-processing modules

This category of objects operates a modification of the input
sequence in order to retrieve analysis data in a subsequent stage.
They apply some one-stage transformation on the input frames
like for example to find adjacent pixels of the same color or
something not too complex.

4.2.1 pdp/pix_opencv_morphology

This technique is aimed at distinguishing more precisely the
forms in an image using the algorithms of opening/closing and
erosion/dilation that increase or reduce the size of zones of
bright or dark pixels. It works better on binary image and is
helpful to join some zones in a picture that define a wider zone to
be processed or tracked.

Input Parameters :

mode : switch between open/close and dilate/erode algorithms.

shape : form of the kernel that is used in the algorithm.

It can be one of : rectangle (0), elliptic (1) or cross-shaped (2).

second inlet : the second inlet indicates the number of iterations
that has the effect of accentuating the transformation.

Output :

You see in this example how the zone of texts is 'melted' with the
dilation to a single identified zone that can be better processed
later.

4.2.2 pdp/pix_opencv_distrans

Another filter that is really close to morphology is the 'distance'
algorithm filter that skeletizes the different forms in an image
and let's you track a simplified form. It works better on binary
images and is particularly appropriate to simplified silhouettes.

Input Parameters :

voronoi (0/1) : activates/desactivates the voronoi triangles
partitioning.

type (0/3/5) : optionally uses a mask in the transformation. 0 is
none.

second inlet : threshold to detect edges.

Output :

You see here the silhouettes can be isolated using a distrans
filter.

4.2.3 pdp/pix_opencv_edge

This filter is a classical edge detector that detects changes of
pixels in the image (using first degree gradient), it can be useful
to pre-process an image before passing it to a contour processing
analysis object.

Input Parameters :

second inlet : threshold to detect edges.

Output :

4.2.4 pdp/pix_opencv_laplace

This filter is also an edge detector but it uses a calculation of the
second derivative known as Laplace in both directions and
detects more accurately the important edges in a picture.

Input Parameters :

second inlet : aperture size (number of points considered to
calculate the derivative).

Output :

4.2.5 pdp/pix_opencv_dft

This filter is very useful in image analysis as it transform an
image from its spacial representation to a frequency domain
representation, modelizing an image as an infinite combination
of sinusoidal waves. This is know as the Discrete Fourier
Transform, very well known of people working in sound
processing and it can be useful also in image analysis. It first
binarize the incoming images and then calculates the Fourier
magnitude and phase diagrams. As it is quite greedy of
ressources, it only process a frame when it receives a 'bang'
message.

Input Parameters :

bang message : triggers the calculation of a DFT.

Output :

You see here the diagram of the magnitude and the phase of the
DFT. The only useful diagram is the magnitude one, that can be
compared with the DFT of another frame using binary operators
like XOR to detect some patterns in an incoming frame, as
shown in the help patch.

4.3 Analysis modules

4.3.1 pdp/pix_opencv_floodfill

This module marks some pixel zones that identifies some blobs,
e.g zones of adjacent pixels of almost the same intensity and
color, taking into account a tolerance in the variation of pixels. It
also repaints these zones in a specific color.

Input Parameters :

second inlet : lower tolerance for pixels.

third inlet : upper tolerance for pixels.

connectivity : use 4-points or 8-points connectivity mode.

color : activates/desactivates color mode.

mark x y : mark a blob containing this pixel.

delete n : delete a marker.

clear : delete all markers.

fillcolor n r g b : set the fill color for blob n.

Output :

second outlet : position of each marked blobs in the form
'number x y width height'.

This object also outputs the coordinates of each detected blobs in
the form : 'number x y width height' through its second outlet, so
it could be considered as an analysis object, but the blob
detection remains a very unstable technique and the tracking is
very imprecise with this object.

4.3.2 pdp/pix_opencv_contours_boundingrect

This object calculates the up-right bounding rectangle of all
contours of an image. This object works better on binary images
distinguishing white pixels zones on a black background.

Input Parameters :

mode : contour detection mode (see cvFindContours [1]).

method : contour detection method (see cvFindContours [1]).

second inlet : minimal size of a contour.

third inlet : maximal size of a contour.

maxmove : maximum movement of a contour between 2 frames

(used for identification/numbering of contours).

ftolerance : number of frames where a contour can disappear
without being considered as lost (used for
identification/numbering of contours).

nightmode 0/1 : only shows the detected contours.

draw 0/1 : draw the contours.

show 0/1 : show the bounding rectangle or not.

Output :

second outlet : position of each contour in the form 'number x y
width height'

third outlet : number of detected contours.

This object outputs on its second outlet the position of each
contour in the form : “number x y width height” and the total
number of contours on its third outlet.

It works detecting any white areas in the input image, it's
important to set max/min values of the areas you want to detect
to filter non interesting noise or areas, also sometimes you will
need to use morphology to transform the contours of the shapes
you want to be analyzed.

4.3.3 pdp/pix_opencv_contours_convexity

This object looks for the convexity curves of the biggest contour
of an image. Each convexity curve is defined by three points : the
starting point, the ending point and the depth point. This object
works better on binary images.

Input Parameters :

none.

Output :

second outlet : the number of convexity curves of the biggest
contour.

Third outlet : the three points defining a convexity curve in the
form : 'number xstart ystart xdepth ydepth xend yend'

This object outputs on its second outlet the number of convexity
curves of the biggest contour and, for each convexity curve, it
outputs on its third outlet the position of defining points :
'number xstart ystart xdepth ydepth xend yend'. This information
is kind of dense and can realistically only be used for simple
geometrical forms.

This object works detecting the biggest area in the input image,
sometimes you will need to use morphology to transform the
contours of the shape to be analyzed.

4.3.4 pdp/pix_opencv_lk

This object detects remarkable points in a contour, using Shi and
Tomasi point detection algorithm, enabling to mark peculiar
points like angles and asperities. You can then choose the points
you want to track by clicking on them or select all of them for
tracking, using Lukas-Kanade (hence lk) tracking technique.

Input Parameters :

init : re-calculates contours and most significative points.

mindistance : minimal distance between points.

quality : quality factor used in approximation. This behaves like
a threshold on the gradient of remarkable points.

mark x y : mark a point to be tracked.

mark all : mark all points.

mark none : unmark all points.

delete n : delete a marker.

clear : delete all markers.

maxmove n : maximum displacement of a point between ywo
frames (used for identification / numbering).

ftolerance n : number of frames where a point can disappear
(used for identification / numbering).

delaunay on : draw a delaunay triangulation between all points.

delaunay off : disactivate the delaunay.

pdelaunay <n> <threshold> : draw a delaunay containing the
point n and all points which difference with point n is below
threshold.

nightmode (0/1) : show/hide original video frame.

second inlet : window size for calculating the gradient.

Output :

second outlet : for each marked point, point position in the
form : 'number x y'.

This object outputs on its second outlet the coordinates of the
points that you have marked clicking on them, just to be able to
output the points that are of interest. It outputs coordinates in the
form “number x y”.

4.3.5 pdp/pix_opencv_surf

This object is very similar to Lukas-Kanade point tracking
technique, but it uses the SURF (Speed Up Robust Features) to
detect remarkable points. It generally detects more points than
the lk detection algorithms.

This object seems to be available only with Open CV 1.1.0, it
will not work with Open CV 1.0.0.

Input Parameters :

hessian : hessian threshold for the detection of points. This
influences the number of detected points.

mark x y : mark a point to be tracked.

mark all : mark all points.

mark none : unmark all points.

delete n : delete a marker.

clear : delete all markers.

maxmove n : maximum displacement of a point between ywo
frames (used for identification / numbering).

ftolerance n : number of frames where a point can disappear
(used for identification / numbering).

delaunay on : draw a delaunay triangulation between all points.

delaunay off : disactivate the delaunay.

pdelaunay <n> <threshold> : draw a delaunay containing the
point n and all points which difference with point n is below
threshold.

nightmode (0/1) : show/hide original video frame.

Output :

second outlet : for each marked point, point position in the
form : 'number x y'.

4.3.6 pdp/pix_opencv_motempl

This object tracks movement of detected objects using the history
of motion on a variable number of frames. It operates internally
with binary images, thresholding the incoming frames and build
an history of image changes with timestamps.

Input Parameters :

second inlet : value of threshold to distinguish blobs.

third inlet : minimal size of a detected blob.

fourth inlet : maximal size of a detected blob.

frame_buffer_size : number of frames in the motion history
(default 4).

max_time_delta : maximum time of a pixel change in the
motion history for detecting a movement.

min_time_delta : minimum time of a pixel change in the motion
history for detecting a movement.

Aperture (1 | 3 | 5 | 7) : aperture size for the calculated
derivative.

mhi_duration : duration of displaying the detected motions.

Output :

second outlet : for each blob detected, the position, the size of
the blob and the direction of its movement in the form “number
x y width height angle”.

This object outputs on its second outlet for each motion
component detected, the position, the size of the component and
the direction of its movement in the form “number x y width
height angle”.

4.3.7 pdp/pix_opencv_hist_compare

This object memorize and draw the statistical composition of an
image in the form of an histogram of the hue and saturation of
the pixels. Therefore, it works only on color frames.

You can record up to 80 histograms that defines the composition
of the image and by comparing them to the actual frame entering,
you can recognize specific configuration of the input image if it
has been memorized before. This can work quite well to
recognize special gestures like from a human hand and can be
used in a kind of gesture command to a pd patch.

Input Parameters :

second inlet : send there a number to memorize a specific
histogram.

Output :

second outlet : the closest stored histogram to the actual entering
frame.

third outlet : all measured distances with presently stored
histograms in the form 'd1 d2 d3...dn'.

This object outputs on its second outlet the number of the closest
recorded histogram to the actual incoming frame and on its third
outlets the measured distances of the actual frame with the stored
histograms.

4.3.8 pdp/pix_opencv_haarscascade

This object loads a Haar's cascade decision tree in the form of an
XML file, that is based on Haar's technique of dividing an image
in squares and calculate some pixels sums on these squares, and
the differences between them. Using this technique, we can
detect some peculiar form in an image, but this needs to be
trained to have the right coefficients stored in the XML with a
great number of sample images (> 10.000). Open CV provides
a tool to create such a decision tree, but the task is fastidious and
not easy. There are various haar's cascade available on the web
like this collection : http://alereimondo.no-ip.org/OpenCV/34.

Input Parameters :

load <xml file> : load an XML Haar's cascade decision tree.

mode (0/1) : use edge detection or not.

min_size : minimal size of a detected object.

min_neighbours : minimum number (minus 1) of neighbour
rectangles that makes up an object (default 2).

scale_factor : scale applied for block size.

ftolerance : number of frames where an object can temporarily
disappear (used for identification / numbering).

clear : clear all objects markers.

Output :

second outlet : number of detected objects.

third outlet : coordinates of each object identified by a circle
under the form 'number x y radius'.

You have to load an .xml decision tree for object recognition.
This object outputs on its second outlet the number of detected
objects and on its third outlet, for each detected object, the
coordinates and the size of the detected objects in the form
'number x y radius'.

4.3.9 pdp/pix_opencv_camshift

This object implements the Continuously Adaptive Mean-shift
tracking algorithm (CAM). You can select an object with the
mouse and it starts tracking the object from a rectangular zone
around this point, but adapting the zone at each iteration. It gives
also the orientation of the object. It's working in the HSV
colorspace, distinguishing the hue from other fields S, V.

Input Parameters :

vmin : V pre-filtering minimal value.

vmax : V pre-filtering maximal value.

smin : S pre-filtering minimal value.

backproject (0/1) : show the backproject (binary image of
selected pixels).

rwidth : initial width of the tracking zone.

rheight : initial height of the tracking zone.

track x y : track an object containing this point.

Output :

second outlet : coordinates, size and orientation of the track
object (only one) in the form : 'x y width height angle'.

4.3.10 pdp/pix_opencv_hough_lines

This object detects segments of lines in the incoming frames
using the Hough detection algorithm.

Input Parameters :

mode : detection mode used for the algorithm, one of :

CV_HOUGH_STANDARD : full lines.

CV_HOUGH_PROBABILISTIC : line segments.

CV_HOUGH_MULTI_SCALE : line segments.

maxlines : maximum number of detected lines.

threshold : difference threshold for detection of edges.

minlength : minimal length of a detected segment.

gap : gap between lines

(for mode CV_HOUGH_PROBABILISTIC)

aresolution : angle resolution

(for mode CV_HOUGH_MULTI_SCALE)

dresolution : distance resolution

(for mode CV_HOUGH_MULTI_SCALE)

nightmode (0/1) : show/hide the incoming video frame.

Output :

second outlet : for each detected line, coordinates of starting and
ending points in the form : 'number xstart ystart xend yend'.

4.3.11 pdp/pix_opencv_hough_circles

This object detects segments of circles in the incoming frames
using the Hough detection algorithm. Most of the time, the
circles do not really exist but are 'almost there'.

Input Parameters :

maxcircles : maximum number of detected circles.

threshold : threshold used in the edges detection (cvCanny).

threshold2 : threshold used for the detection of the centers.

mindist : minimum distance between circles centers.

resolution : resolution of the accumulator.

nightmode (0/1) : show/hide the incoming video frame.

Output :

second outlet : for each detected circles, coordinates of the
center and radius in the form : 'number xcenter ycenter radius'.

4.3.12 pdp/pix_opencv_hu_compare

This object takes two inputs, generally an incoming video stream
and a pattern image, also in form of a video stream and tries to
detect the pattern in the incoming video frames. It operates as
follows : it extracts from the pattern image the biggest contour
and compare the contours of the incoming video using
cvMatchShapes, which compares contours calculating their Hu
moments, characteristics of the topology of the contours.

Input Parameters :

minsize : minimal size of threated contours, to remove small
shapes and noise.

method : method used in cvMatchShapes which can be one of :

CV_CONTOURS_MATCH_I1, CV_CONTOURS_MATCH_I2
or CV_CONTOURS_MATCH_I3 : the difference between the
Hu moments are computed with different formulas (see
cvMatchShapes documentation).

clear : recalculate the contour of the pattern image if ever it
changes.

criteria : minimal distance under which the contours are
considered as detected and highlighted.

Output :

first outlet : the contours of the incoming video stream with
detected contours highlighted.

second outlet : the pattern image contour.

third outlet : the minimum distance between the contours of the
incoming stream with the pattern image.

As the contours are all normalized before the comparisons, the
size and orientation of the contours should not impair the
detection, but from the tests we've been running, this is more
relevant with the next module that compares contours using a
PGH histogram.

4.3.13 pdp/pix_opencv_pgh_compare

This object is very similar to the previous one, except that for
comparing contours, it uses a PGH histogram instead of the Hu
moments. The PGH histogram is an histogram of the convexities
of the contours storing the size and angle of each curve. This
method is statistical and is better for detecting contours
regardless of their size and orientation.

Input Parameters :

minsize : minimal size of threated contours, to remove small
shapes and noise.

clear : recalculate the contour of the pattern image if ever it
changes.

criteria : minimal distance under which the contours are
considered as detected and highlighted.

Output :

first outlet : the contours of the incoming video stream with
detected contours highlighted.

second outlet : the pattern image contour.

third outlet : the minimum distance between the contours of the
incoming stream with the pattern image.

This object is less sensitive to the change of size and orientation,
but as it is statistical, it can also confuse a contour for another
that would include the same number of curves with the same
angle.

4.3.14 pdp/pix_opencv_knear

This object compares the incoming video frames with a
collection of samples loaded from a directory. The idea is to
implement a kind of form recognition close to some OCR
techniques that recognizes incoming characters calculating the
distance from the current input with all the samples of a
database. The calculated distance just calculates the number of
pixels that are different after binarizing them.

Input Parameters :

load <directory> <count> : load all the samples from a database.
The directory must contain files named : 000.png,
001.png....count.png.

bang : calculates the distance of the incoming video frame with
the database.

Output :

second outlet : the distance of the incoming image with the
database.

Here the database is a database of '+' signs and a distance smaller
than 2000 detects a more-or-less well-formed sign but this
threshold (2000) depends on the size of the samples and on the
tolerance you want to give to the algorithm, so it must be adapted
to each particular case.

5. Programing hints

We give here a few hints to enter into the programming of Open
CV objects for PD in order to open the projects to other
developers that are interested in collaborating to this effort.

5.1 Programing for PDP

Open CV works in RGB mode, so every pdp object for Open CV
should start converting any incoming frame to an RGB packet
with :

pdp_packet_convert_ro_or_drop(&x->x_packet0, (int)f, pdp_gensym("bitmap/rgb/*"));

Then, some processing in Open CV requires sometimes a Gray
image, so you can convert the PDP packet to an Open CV bitmap
in two steps : first, copying the PDP packet to an Open CV RGB
image :

x->image = cvCreateImage(cvSize(x->x_width,x->x_height), IPL_DEPTH_8U, 3);

short int *data = (short int *)pdp_packet_data(x->x_packet0);

memcpy(x->image->imageData, data, x->x_size*3);

If you need an Open CV Gray image, you can convert it using :

x->gray=cvCreateImage(cvSize(x->x_width,x->x_height), IPL_DEPTH_8U, 1);

cvCvtColor(x->image, x->gray, CV_BGR2GRAY):

Now you can make all Open CV operations on the RGB or the
Gray CV image, when you are done, you can copy the result in a
new pdp packet to be propagated, if you don't PDP would modify
the incoming image and it's surely not what you want :

short int *newdata = (short int *)pdp_packet_data(x->x_packet1);

memcpy(newdata, x->image->imageData, x->x_size*3);

5.1 Programing for GEM

Here it's a bit different as Gem works in RGBA mode, but only if
you specify it with a message to a pix_film or pix_video object
for example, e.g. to the object that sends the video frame to your
Open CV object.

Then, as in PDP you should copy the incoming GEM image in an
RGBA Open CV image and eventually convert it to a Gray Open
CV image with :

orig = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 4);

gray = cvCreateImage(cvSize(orig->width,orig->height), IPL_DEPTH_8U, 1);

cvCvtColor(orig, gray, CV_RGBA2GRAY);

You can then proceed with your Open CV processing and when
you're done, you should copy the result to the GEM image again :

memcpy(image.data, orig->imageData, image.xsize*image.ysize*4);

6. Conclusion and Perpectives

The Open CV library seems at this date the most complete open
source library for computer vision, and it's an assembly of many
different techniques and algorithms. We just started a frame for
Open CV support in PD, but still haven't explored all its
possibilities and litterature, that is huge and we have only read
some part of it.

Surprisingly, it's not always the most complex algorithms that
work and sometimes a simple technique like the one of the
histograms is capable of bringing a sense of intelligence to a pd
patch, although it's only a statistical accounting but that, used in
a specific context, can be more accurate than some other
techniques involving artificial intalligence for example.

Every technique is valid in a certain context, for a specific goal,
and it's good to have a variety of techniques to threat the same
problem : providing an intelligent way to interact with a patch.

7. References

[1] Open Cv, an Open Source and optimized library for
Computer Vision using various algorithms and artificial
intelligence techniques :

http://sourceforge.net/projects/opencvlibrary/

http://opencv.willowgarage.com/wiki/

[2] PD Open CV development wiki, a set of objects for Pd/PDP
and Pd/Gem, bindings to the Open CV library for Pure
Data :

http://www.hangar.org/wikis/lab/doku.php?
id=start:puredata_opencv

[3] Intel's Integrated Performance Primitives (ipp), optimized
and multi-threated primitives for multi-media processing on
Intel compatible processors:

http://software.intel.com/en-us/intel-ipp/

[4] “Learning Open CV” by Gary Rost Bradski, Adrian
Kaehler, a programming guide for Open CV :

http://my.safaribooksonline.com/9780596516130?
portal=oreilly

[5] HIPR2 : Image Processing Learning Ressource, by Robert
Fisher, Simon Perkins, Ashley Walker, Erik Wolfart, a
didactic guide to image analysis techniques :

http://homepages.inf.ed.ac.uk/rbf/HIPR2/

[6] HOWTO write an External for Pure Data, by Johannes M.
Zmölnig, an in-depth programming guide for Pure Data
externals:
http://pdstatic.iem.at/externals-HOWTO/

[7] PureDataPacket (PDP), Multimedia extension library for
PD:

http://zwizwa.be/pd/pdp/overview.html

[8] PiDiP, video processing objects for Pure Data Packet
http://ydegoyon.free.fr/PiDiP.html

[9] GEM, 3D and video extension for Pure Data:

http://gem.iem.at/

[10] Pure Data, by Miller S. Puckette, an open-source, BSD
licensed multi-media toolbox and programming language:

http://puredata.info/

[11] Computer Vision for Artists and Designers: Pedagogic Tools
and Techniques for Novice Programmers, by Golan Levin
and Zachary Lieberman:

http://www.flong.com/texts/essays/essay_cvad/

http://sourceforge.net/projects/opencvlibrary/
http://www.flong.com/texts/essays/essay_cvad/
http://puredata.info/
http://gem.iem.at/
http://ydegoyon.free.fr/pidip.html
http://zwizwa.be/pd/pdp/overview.html
http://pdstatic.iem.at/externals-HOWTO/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/
http://my.safaribooksonline.com/9780596516130?portal=oreilly
http://my.safaribooksonline.com/9780596516130?portal=oreilly
http://software.intel.com/en-us/intel-ipp/
http://www.hangar.org/wikis/lab/doku.php?id=start:puredata_opencv
http://www.hangar.org/wikis/lab/doku.php?id=start:puredata_opencv
http://opencv.willowgarage.com/wiki/

	1. Introduction
	2. Motivations and Goals
	3. First Considerations Working With Computer Vision
	4. Existing modules
	4.1 Filtering modules
	4.1.1 pdp/pix_opencv_threshold
	4.1.2 pdp/pix_opencv_athreshold
	4.1.3 pdp/pix_opencv_bgsubstract
	4.1.4 pdp/pix_opencv_bgstats
	4.1.5 pdp_opencv_channels

	4.2 Pre-processing modules
	4.2.1 pdp/pix_opencv_morphology
	4.2.2 pdp/pix_opencv_distrans
	4.2.3 pdp/pix_opencv_edge
	4.2.4 pdp/pix_opencv_laplace
	4.2.5 pdp/pix_opencv_dft

	4.3 Analysis modules
	4.3.1 pdp/pix_opencv_floodfill
	4.3.2 pdp/pix_opencv_contours_boundingrect
	4.3.3 pdp/pix_opencv_contours_convexity
	4.3.4 pdp/pix_opencv_lk
	4.3.5 pdp/pix_opencv_surf
	4.3.6 pdp/pix_opencv_motempl
	4.3.7 pdp/pix_opencv_hist_compare
	4.3.8 pdp/pix_opencv_haarscascade
	4.3.9 pdp/pix_opencv_camshift
	4.3.10 pdp/pix_opencv_hough_lines
	4.3.11 pdp/pix_opencv_hough_circles
	4.3.12 pdp/pix_opencv_hu_compare
	4.3.13 pdp/pix_opencv_pgh_compare
	4.3.14 pdp/pix_opencv_knear

	5. Programing hints
	5.1 Programing for PDP
	5.1 Programing for GEM

	6. Conclusion and Perpectives
	7. References

